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ABSTRACT: Chemometric analysis of near-infrared (NIR) spectra recorded directly on fresh leaves of barley plants (Hordeum
vulgare, L.) enabled the separation of control and Cu deficient samples before any visual deficiency symptoms developed. This
demonstrates that the molecular structure of leaves is modified during latent Cu deficiency. Lignin biosynthesis is a primary
target of Cu deficiency, but lignin concentrations were unaltered when separation was first possible, indicating that alteration of
lignin composition, not concentration, is among the earliest effects of Cu deficiency in plants. Validation of chemometric models
using an independent test set found that 92% of samples were correctly classified as control or Cu deficient, respectively. Models
were undisturbed by including spectra from plants deficient in P, Mg, B, or Mn, establishing their specificity for Cu deficiency.
This study is the first to demonstrate that NIR has the potential to successfully diagnose the deficiency of an essential trace
element in plants.
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■ INTRODUCTION

Copper is an essential micronutrient for plants, and Cu
deficiency is found worldwide, mainly in humic and sandy soils,
and in soils with high pH and Cation Exchange Capacity
(CEC). This results in considerable yield losses in plant
production. Cu deficiency in plants can be difficult to diagnose
and may not be recognized by the plant producer until it has
reached a stage where correction is no longer possible. Severe
Cu deficiency in cereals results in necrotic leaf tips, known as
“white tip disease”, which is caused by a collapse of cell walls
due to poor lignification.1 This is a key-symptom for Cu
deficiency in plants, caused by a general down-regulation of the
lignin biosynthesis.2 Lignin is a biopolymer, which is partly
responsible for the rigidity of plant cell walls, and it is
synthesized from three phenylpropanoid alcohols: coniferyl, p-
coumaryl, and sinapyl alcohols.3 These monolignols are
coupled to dimers and trimers by the enzyme laccase. Plant
laccase is a member of the multicopper protein family,
containing four Cu atoms per molecule,4 hence the correlation
to Cu status. The amount and composition of the different
monolignols vary with plant species and may also change
during plant development or as a result of stress.5

If Cu deficiency is latent, it will not result in any visual
symptoms during vegetative growth. Nevertheless, plant fertility
and productivity can still be severely affected either due to poor
lignification of anthers resulting in failure of pollen release6 or
because the number of pollen grains is highly reduced.7 The
first visual symptom of latent Cu deficiency in cereals is, thus, a
decreased grain set. This lack of clear visual symptoms in due
time for action is what causes Cu deficiency to be one of the
most challenging nutrient disorders to handle for the plant
producer. In the case of only limited yield loss, deficiencies may
never be recognized, and the prevalence of Cu deficiency could
therefore be much larger than commonly accepted.

The commonly used methods for the management of Cu
nutrition in crops are soil and, to some extent, plant analyses.
Soil analyses are typically carried out before the start of the
growing season and may thereby assist farmers in predicting
fertilization needs. However, the practical use of analyzing the
Cu concentration in soils has proven of little value, as the plant
available concentration of a nutrient often differs significantly
from the extractable nutrient concentration. Variations during a
growing season may also occur, depending on changes in the
soil water content.8 Plant analyses provide total concentrations
of essential nutrients in sampled plant tissue at a specific time of
growth, and these are related to sufficiency threshold values.
Unfortunately, the total concentration of a given nutrient does
not necessarily indicate whether the plant is optimally
supplied.9 The optimal concentration of a given plant nutrient
is highly dependent on plant species, cultivar, growth stage, and
level of other nutrients, especially N.1 A study in wheat and
cotton found no significant differences between Cu concen-
trations in leaves of Cu deficient and Cu sufficient plants.9

In order to develop methods for simple, fast, and inexpensive
plant analyses, various spectroscopic techniques have been
tested for their ability to predict nutrient concentrations in
plants. Near infrared (NIR) reflectance has been related to N
and P status in perennial ryegrass and sugar cane,
respectively.10,11 The L*a*b*, or CIELAB, system is a three-
dimensional system using the lightness (L*), green/red balance
(a*), and blue/yellow balance (b*) of a color. By photograph-
ing and analyzing leaf material in accordance with this system, it
has been used to assess the concentrations of N, P, K, Mg, or
Fe in various legumes, Brassica chinensis, and maize.12−14
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Chlorophyll concentrations are estimated by the ratio of light
transmittances at 650 nm and 940 nm in the commonly used
SPAD chlorophyll meter,15 though no strictly linear correlation
to chlorophyll is found.16 New, innovative methods count the
assessment of N level in plants by combining measurements of
polyphenolics and chlorophyll detected using absorbance in the
ultraviolet (UV) and visual (Vis) parts of the spectrum in a
hand-held device.17 Also tractor mounted equipment is found,
measuring indexes based on reflectance measurements in NIR
and red light (620−700 nm). These relate to chlorophyll
concentrations but not specifically to N level.18,19 Investigations
focus mainly on macronutrients, and the specificity of the
methods is rarely tested thoroughly, which is absolutely critical
for any practical use, as other deficiencies may occur in a field
situation. Furthermore, data are related to total nutrient
concentrations, which, especially for micronutrients, is not an
exact measure of the nutritional status of a plant. Finally,
investigations and discussions of how much growth conditions
influence the results and how this can be handled are essential
but yet often found missing. Altogether, this restrains the
applicability of the obtained results severely.
Enabling the plant producer to carry out analyses on the farm

or even in-field with results correlating directly to plant
nutritional status would be a major improvement. This can be
done by focusing on “the bioactive concentration”, which is
probed by investigating whether plant functions, for which the
nutrient is essential, are hampered. Thus, the impact of any
other factor influencing the optimal level is automatically taken
into consideration. One successful example of such a method is
the finding that Mn deficiency was correlated to the quantum
yield efficiency of PhotoSystem II (PSII) in barley.20,21

The present work investigates the spectral differences
between Cu sufficient plants and plants suffering from latent
Cu deficiency by analyzing the NIR range of the electro-
magnetic spectrum (800−2,500 nm/12,500−4,000 cm−1). The
differences detected by NIR spectroscopy are related to the
physiological changes induced during Cu deficiency, and it is
demonstrated that the NIR technology has a potential for fast
determination of the bioactive concentration of Cu in plants.

■ MATERIALS AND METHODS
Cultivation of Plants. Barley plants (Hordeum vulgare L., cv.

‘Chess’) were cultivated in hydroponics. In addition, plants of cv.
‘Matros’ were grown to produce an independent validation set. Seeds
were germinated for six to eight days in vermiculite and irrigated with
double demineralized water. Seedlings were transferred to black 4 L
containers with nutrient solution and aerated using steel medical
syringes suspended in the solution, which was changed weekly. The
control nutrient solution contained 200 μM H2PO4, 200 μM K2SO4,
300 μM MgSO4·7 H2O, 100 μM NaCl, 300 μM Mg(NO3)2·6 H2O,
900 μM Ca(NO3)2·4 H2O, 600 μM KNO3, 50 μM Fe(III)-EDTA-Na,
2.0 μM H3BO3, 0.8 μM Na2MoO4·2 H2O, 0.7 μM ZnCl2, 1.0 μM
MnCl2·4 H2O, and 0.8 μM CuSO4·5 H2O. During the first week of all
experiments, the concentration of micronutrients was reduced by 50%
in order to avoid EDTA poisoning of the young and sensitive plants.
To avoid Fe deficiency, additional 50 μM Fe(NO3)3·9 H2O was
supplied this week. All stock nutrient solutions were prepared in Milli-
Q water (Milli-Q Element, Millipore, MA, USA), and macronutrient
stock solutions were purified by Chelex-100 resin (Sigma-Aldrich,
USA) and allowed only trace impurities of cationic micronutrients. For
the entire growing period, Cu was excluded from plants selected for
the induction of Cu deficiency, and Mn was excluded from plants
selected to develop Mn deficiency. The pH was adjusted regularly to
6.0 ± 0.3 using ultrapure NaOH and HNO3 or HCl. Each container
held 12 plants, fitted into slits in circles of rubber foam covering the

top of the container. The number of containers varied in the different
experiments as noted below. Plants were cultivated in a growth
chamber with a light regime of 16/8 h day/night with 250−280 μmol
m−2 s−1 at plant level. Except from the time series of progressing Cu
deficiency (see below), temperature was kept at 20/15 °C day/night
and relative humidity at 75%.

Time Series of Progressing Cu Deficiency. A setup with 40
containers as described above was used. Twenty containers were
provided with optimal, control, conditions throughout the experiment,
and 20 containers were deprived of Cu throughout. Analyses were
carried out daily during 10 days, from 9 to 18 days after emergence
(DAE). The temperature was kept constant at 18 °C and the relative
humidity at 60%.

Manganese Deficiency, Resupply of Copper, and Cultivar
Variation Experiments. A setup with 60 containers as described
above was used. Fifteen containers were given control conditions, 15
containers were deprived of Mn, and 30 initially deprived of Cu. The
plants were measured regularly, and Mn deficient plants were
harvested 31 DAE. At 32 DAE, 15 containers were resupplied with
Cu and provided with control conditions for 17 days, until the end of
the experiment. NIR analyses were carried out regularly throughout
the 49 day growing period. In parallel with this, three containers of cv.
‘Matros’ provided with control conditions and three deprived of Cu
were cultivated. This validation set was measured and harvested 32
DAE.

Near Infrared Absorbance Analysis. Near infrared reflectance
was measured in the range from 10,000 to 4,000 cm−1 (1,000−2,500
nm) using a spectral resolution of 8 cm−1. Data were recorded for
every 3.86 cm−1, resulting in a total of 1556 data points. All
measurements were carried out in the middle of the youngest fully
developed leaf (YFDL). The NIR spectra were recorded on a Bomem
QFA Flex FT-NIR spectrometer (Q-Interline A/S, Roskilde, Den-
mark), but it was tested and verified that other spectrometers yielded
comparable results. The measured reflectance was converted into
absorbance as follows:
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where Abs designates absorbance, R is reflectance of the sample, and
R0 is reflectance of a white standard reference. Each leaf was mounted
with the adaxial side facing the sampling window of the light source. A
black object was mounted on the abaxial side to prevent any light
interference. Only leaves without necrotic or chlorotic spots were
measured. Measuring order of samples was randomized in order to
avoid confounding treatments.

Plant Biomass and Growth Rates. Biomasses of roots and
shoots of individual plants were recorded at harvest. The two parts
were separated just above the seed position and weighed immediately
after NIR analyses were performed. Relative growth rates (RGR) were
computed as follows:
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where Y is fresh weight at measuring day t, and Y0 is fresh weight at t0,
the first measuring day of the experiment.

Quantum Yield Efficiency. Quantum yield efficiency of PSII,
expressed as Fv/Fm, was measured to diagnose Mn deficiency in the
Mn deficiency experiment, according to the method described by
Husted, et al.20 Leaves were dark adapted for a minimum of 30 min
using Hansatech leaf clips, after which the Fv/Fm ratios could be
determined using a Handy Plant Efficiency Analyzer (Hansatech
Instruments, Kings Lynn, UK). Healthy plants have Fv/Fm ratios
around 0.83, whereas a value of 0.55 indicates strong Mn deficiency.

Chlorophyll and Carotenoid Concentrations. Concentrations
of chlorophyll and carotenoids were determined in plant material from
the time series experiment. Approximately 1 cm of leaf material in full
width from the middle part of the YFDL was extracted for 24 h in
methanol. Absorbance was subsequently measured in a Genesys 10S
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UV−Vis spectrophotometer (Thermo Scientific, MA, USA), according
to the method described by Lichtenthaler and Wellburn.22

Lignin Concentrations. Leaf material originating from plants
grown in the same container was pooled in order to obtain sufficient
biomass for analyses of lignin and multielemental composition. After
freeze-drying, samples were ground in zirconium-coated jars
containing a zirconium-coated mill ball in a Retsch MM301 ball-
mill. Cell walls were isolated using the method described by Hatfield,
et al.23 in a microscaled version. Then, 10 mg samples were weighed
exactly into a centrifugal filter with a 0.45 μm nylon filter (Millipore
Ultrafree-MC, Millipore, MA, USA), and 500 μL of 80% ethanol was
added. The samples were sonicated for 10 min at ambient temperature
and centrifuged in a table-top centrifuge (Eppendorf MiniSpin, Fischer
Scientific, USA) for 15 s at 14,500 rpm. This extraction step was
repeated for a total of four cycles and followed by a single extraction
cycle using 500 μL of chloroform/methanol (2:1). Finally, samples
were rinsed twice by 500 μL of acetone and dried at 45 °C until
completely dry for approximately 20 min.
The lignin concentration in cell walls was determined as described

in the “microscale method using microplates” in Chang, et al.24 Four
to 6 mg of extracted cell walls were weighed exactly and transferred to
8 mL glass vials. One milliliter of 25% acetyl bromide in glacial acetic
acid was added and the vials closed tightly with Teflon coated screw
caps. Vials were placed in a 70 °C water bath for 30 min, shaken gently
every 10 min, causing degradation of cell walls together with
acetylation and bromine substitution of the lignin.25 The digested
samples were cooled on ice, and 5 mL of glacial acetic acid was added
to each vial followed by vortexing. After mixing, samples were left on
ice for a minimum of 30 min in order to allow residues of protein to
precipitate.26 Thirty microliters of each sample, including a blank, was
transferred in triplicate to a 96-well quartz microplate. In each well, 40
μL of 1.5 M NaOH, 30 μL 0.5 M hydroxylamine hydrochloride, and
150 μL of glacial acetic acid were added, and absorbance of the lignin
derivate was measured at 280 nm in a microplate spectrophotometer
(Eon Microplate Spectrophotometer, BioTek Instruments, Winooski,
USA). The method was verified by standard addition of 2, 4, 8, and
12% (of dry matter) pure lignin (Aldrich 471003, Sigma-Aldrich,
USA) to a control sample of barley leaf. The value “absorbance per mg
cell wall” was used for comparisons between samples.
Multielemental Composition of Leaves. The multielemental

composition of plants was analyzed using inductively coupled plasma−
mass spectrometry (ICP-MS) (Agilent 7500ce, Agilent Technologies,
Manchester, UK) or ICP−optical emission spectroscopy (ICP-OES)
(Optima 5300DV, PerkinElmer, Waltham, Massachusetts, USA). Prior
to analysis, approximately 20 mg of each freeze-dried, ground sample
was digested in 500 μL of 67−69% HNO3 (Plasmapure, SCP Science)
and 250 μL of 30% H2O2 (Ultrapure, Riedel de Haen̈, Sigma-Aldrich)
using a single reaction chamber microoven digestion system
(Ultrawave, Milstone S.r.l., BG, Italy). All samples were subsequently
diluted to 10 mL with milli-Q water (Milli-Q Element, Millipore) and
analyzed directly by ICP-MS as described by Laursen et al.,27 or by
ICP-OES as described by Laursen et al.28 A minimum of 5 samples of
digested certified reference material (spinach, NCS ZC73013, National
Analysis Center for Iron and Steel, China; and apple leaves, NIST
1515, National Institute of Standards and Technology, Gaithersburg,
MD, USA) was used in each analytical run for data quality evaluation.
Accuracy was generally better than 90% of the reference values for all
elements. Multielemental ICP-MS data was processed using the
MassHunter software (version B.01.01, Agilent Technologies), while
the WinLab32 software (version 3.1.0.0107, PerkinElmer) was used
for ICP-OES data.
Chemometric Analyses. Chemometric analyses were carried out

using Matlab R2011b (Mathworks, Inc., Natick, MA, USA) and
PLS_Toolbox 6.0.1 (Eigenvector Research, Inc., Wenatchee, WA,
USA). Three methods were used, namely principal component
analysis (PCA), partial least squares regression (PLS), and PLS
discriminant analysis (PLSDA), all explained briefly below.
Preprocessing of Spectra. Before analysis, data was prepro-

cessed. In the present work, multiplicative scatter correction (MSC)
followed by mean centering was used on all data. MSC is a standard

preprocessing approach for NIR data. By correcting the individual
spectra so that their slope and intercept are similar to those of the
mean spectrum, the irrelevant influence of scatter and offset is
minimized.29 Mean centering is done by subtracting the mean of all
spectra included in the model from each individual spectrum in order
to focus on the variation between samples.

Principal Component Analysis. Principal component analysis is
a method for reducing the number of dimensions in multivariate data
with a minor loss of information, thereby enabling a simpler, yet
comprehensive, overview of the main variations within the data set.
Data are visualized on information-rich axes named principal
components, where often the first few will be sufficient for showing
major differences between samples. For a more thorough introduction
to PCA, see Martens and Næs.30

Partial Least Squares and Partial Least Squares Discriminant
Analysis. The partial least-squares analysis has many similarities to
PCA, only where the new axes, here named latent variables, are
determined so as to maximize how much they are able to covary with a
set of responses in a y-matrix, for instance total concentrations of a
nutrient. The outcome is a regression model which is able to predict y-
values based on x-input. The PLSDA is an extension of the PLS
analysis, yielding a model focused on finding the variation that
separates two or more groups. Barker and Rayens31 discuss the
method more thoroughly.

Validation and Cross-Validation. When the number of samples
does not allow a separate validation set, as in most of the present work,
cross-validation is used instead. Cross-validating a model means that a
number of models are computed, excluding in turn all data in groups.32

The error of the predictions of y of the excluded data provides an
estimate of the error that would be obtained when predicting truly new
samples with the model. In the present work, plant samples grown in
the same container were excluded groupwise in the cross-validation, so
that the number of cross-validation groups equaled the number of
containers.

A PLSDA model was developed using 982 samples of cv. ‘Chess’
pooled from different, preliminary experiments. The experiments were
carried out under a variation of growing conditions, in both growth
chambers and the greenhouse, and P, Mg, Mn, and B deficient plants
were included in the control group. The model was validated on a
validation set containing 72 samples (cultivated in 6 containers) of cv.
‘Matros’. The independence of the validation set can be disputed by
the growing conditions, which were similar for the validation set and
120 samples of the calibration set. It should be noted, though, that the
cultivars and measuring days differed.

■ RESULTS

Plant Growth and Development of Cu Deficiency
Symptoms. The first visual difference between Cu treatments
in all experiments was a retardation of both shoot and root
growth in plants deprived of Cu, which increased clearly with
time (Figure 1). No Cu deficiency symptoms were apparent on
the leaves during the experimental period, but the characteristic
“white tip disease” developed in plants deprived of Cu when
they were cultivated for an extended period of up to 49 DAE
(Figure 2).

Chlorophyll and Carotenoids. A significant (p < 0.0001)
elevation of average carotenoid concentrations in plants
deprived of Cu, compared to that in control plants, was
shown throughout the time series (Table 1), indicating that the
plants were stressed. No differences were found in chlorophyll
concentrations between treatments (data not shown).

Elemental Composition of Plants. Multielemental
analysis showed that Cu was the only essential plant nutrient
differing consistently in concentrations between treatments. In
control plants, a slightly declining trend in the high Cu
concentrations was noticed from 10 DAE and onward (Table
2). Similar observations were made in control plants of the
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experiment running until 49 DAE. Plants deprived of Cu for
the entire period contained little Cu, whereas Cu deprived
plants resupplied with Cu at 32 DAE increased their Cu
concentrations rapidly and even exceeded the level in control
plants slightly but at a significant level (Table 3).
Lignin Concentrations. Lignin concentrations were

assessed in the time series of progressing Cu deficiency.
Comparing control samples with those deprived of Cu, no

significant differences were observed until 14 DAE. After that
time, lignin concentrations in Cu deficient plants were lower
compared to those of control plants, though an overall
increasing tendency was noted for concentrations in samples
of both treatments (Figure 3). At 17 DAE, the samples had

somewhat lower concentrations than expected and must be
regarded as outliers. This is not an unexpected incident, as the
number of biological repeats is very low.

NIR Analysis. NIR absorbance spectra were measured
directly on the adaxial surface of the YFDL of all plants. Copper
has restricted phloem mobility in plants, which is why the
expression of deficiency is expected first in the youngest leaves.

Figure 1. Shoot (a) and root (b) fresh weight of control and
increasingly Cu deficient plants from the time series of progressing Cu
deficiency. Values are shown as means (n = 24) ± 1 standard deviation
(SD). Means of treatments were significantly different in both shoots
and roots according to Student’s t test during the entire measuring
period.

Figure 2. Youngest fully developed leaf of control and heavily Cu
deficient plants at 49 DAE. Healthy leaf from a control plant (top) and
a leaf with clearly developed Cu deficiency symptoms, “white tip”,
from a plant deprived of Cu (bottom).

Table 1. Total Concentrations of Carotenoids (mg/g Fresh
Weight) at 9-13 DAE in Control and Cu Deficient Plants
from the Time Series of Progressing Cu Deficiencya

treatment

DAE control −Cu

9 0.06 ± 0.04 0.11 ± 0.06
10 0.05 ± 0.02 0.10 ± 0.03
11 0.04 ± 0.03 0.15 ± 0.04
12 0.07 ± 0.03 0.11 ± 0.08
13 0.15 ± 0.04 0.20 ± 0.05

aValues are shown as means (n = 24) ± 1 SD. Concentrations differed
significantly according to Cu treatment (p < 0.0001).

Table 2. Total Cu Concentrations (μg g−1 Dry Weight) at 9-
13 DAE in Control and Cu Deficient Plants from the Time
Series of Progressing Cu Deficiencya

treatment

DAE control −Cu

9 10.1 ± 0.2 2.4 ± 0.0
10 15.2 ± 0.6 2.2 ± 0.0
11 14.7 ± 0.4 1.6 ± 0.1
12 13.0 ± 0.2 2.5 ± 0.0
13 13.2 ± 0.1 1.8 ± 0.0

aValues are shown as means (n = 2) ± 1 SD. All measuring days and
means of treatments were significantly different according to a
Student’s t-test.

Table 3. Total Cu Concentrations (μg g−1 Dry Weight) in
Control, Cu Deficient, and Cu Resupplied Plants from the
Cu Resupply Experimenta

treatment

DAE control −Cu Cu resupplied n

28 20.3 ± 4.9 0.9 ± 1.1 5
35 17.1 ± 2.1 <LOD 4.6 ± 1.5 6
44 10.7 ± 2.0 <LOD 13.4 ± 1.4 3
49 11.6 ± 1.2 <LOD 14.6 ± 1.5 5

aMeasurements are derived from 28-49 DAE, where 35-49 DAE is
equivalent to 3−17 days after resupplying Cu. Values are shown as
means (n indicated in table) ± 1 SD, and concentrations below the
limit of detection (LOD) are designated <LOD. All measuring days
and means of treatments were significantly different according to a
Student’s t-test.

Figure 3. Lignin concentrations in the YFDL of control and
increasingly Cu deficient plants from the time series of progressing
Cu deficiency. Expressed in units of absorbance at 280 nm per mg
isolated cell wall material after derivatization of lignin. Values are
shown as means (n = 2) ± 1 SD. Means of treatments were
significantly different from 14 DAE according to a Student’s t test.
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The adaxial side was chosen due to practical considerations, as
the leaf was the easiest to place on the NIR instrument this way.
In Figure 4, an example of raw and preprocessed spectra is
shown together with the raw spectrum of pure lignin. Using
only raw spectra, no immediate classification of an unknown
spectrum would be possible due to the overlapping of spectra
from the two treatments. After preprocessing, the spectra
separate systematically according to treatments in the beginning
of the spectrum, at 5,200−5,300 cm−1 and at 6,800−7,100
cm−1. At these specific ranges, the spectrum of lignin is also
found to peak. From 7,500−10,000 cm−1, the preprocessed
spectra are similar for both treatments and contain little
information about the plant tissue chemical composition. This

was found to be a general pattern for all spectra measured, and
consequently, this part of the spectrum was omitted before
modeling.

Partial Least Squares Model. We tested whether the
obtained NIR spectra could be related to total Cu
concentrations in leaves, using a PLS model developed on
data from the Cu resupply experiment. The Cu concentrations
in leaf tissue span the range from below the limit of detection
and up to almost 28 μg Cu g−1 dry matter. A calibration based
on 7 latent variables resulted in a cross-validated model with a
root mean squared error of cross-validation (RMSECV) of 5.7
μg Cu g−1 dry matter. The RMSECV is the average error in
cross-validation and hence a measure of the inaccuracy of the

Figure 4. Raw (a) and preprocessed (b) NIR spectra from 13 DAE in the time series of progressing Cu deficiency; the spectrum of pure lignin is
inserted in panel a. Preprocessing was carried out using MSC and mean centering.

Figure 5. Score plots for PCA models based on NIR spectra from plants in the time series of progressing Cu deficiency. The principal components
performing optimal separation of treatments in each model are presented, from 9−13 DAE.
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predictions. With a concentration range from below the
detection limit to 28 μg Cu g−1 dry matter, 5.7 μg Cu g−1

dry matter must be considered a relatively large error value.
The poor prediction quality of the calibration is further
substantiated by the squared correlation coefficient (R2) for
cross-validated data, which is 0.5. Thus, a model based on NIR
absorbance data is unlikely to predict the total concentration of
Cu in leaves at a satisfactory level.
Principal Component Analysis Models. In the time

series of progressing Cu deficiency, spectral data were analyzed
for each separate measuring day by PCA using 2 to 4 principal
components and investigating the ability of the model to
separate samples into two groups according to Cu treatment.
The separation between treatments improved daily from 9
DAE, when the first analyses were carried out, to 13 DAE,
when an almost complete separation was obtained (Figure 5).
From 14 to 18 DAE, the separation of groups remained close to
complete, with only few outliers as exceptions (data not
shown). The loadings of the first principal components were
found to peak in the same ranges as the raw spectra, i.e., 5,200−
5,300 cm−1 and 6,800−7,100 cm−1 (loadings not shown).
Hence, depriving plants of Cu affects molecules with strong
absorption in these specific ranges, thereby enabling a
separation of Cu treatments using the spectral information.
Analyzing all NIR spectra collected during the time series of

progressing Cu deficiency in one PCA resulted in a model
exhibiting a clear effect of age (Figure 6a). The first principal

component declines in value with increasing sample number,
i.e., increasing age of the plant. In the second principal
component, the effect of Cu treatment is found. Samples are
separated according to treatment from sample number 234,
equivalent to 14 DAE, and onward (Figure 6b). This is one day
later than the first occurrence of complete separation by a
model based on data from only one day at a time (Figure 5).

Validation of Specificity. The physiological effects of Mn
and Cu deficiencies have a number of similarities, and they are
therefore likely to be confused. Hence, the specificity of the
method using NIR absorbance spectra to detect Cu deficiency
could be examined to some extent by investigating whether Mn
and Cu deficiencies differ in spectral fingerprints. This was
tested in a setup where both disorders were induced, along with
the cultivation of control plants with ample supply of nutrients.
Severe but still latent Mn deficiency was established 31 DAE,

around Zadoks growth stage 23, with Fv/Fm ratios of 0.55.
Control plants had Fv/Fm ratios of 0.82, and Cu deficient
plants were only slightly lower, at 0.79, which does not indicate
any critical PSII malfunctioning of the plant. The NIR
absorbance spectra of the YFDL on all plants were measured
on this day and a cross-validated PCA developed. The score
plot of this model shows that Cu and Mn deficient plants have
separated from control plants and from each other along the
first and to some extent the second principal component
(Figure 7).

A method for diagnosing a nutritional disorder must ideally
be efficient at a stage where the disorder can be remedied and
the plants brought back into a growth condition similar to that
of control plants. Whether models based on NIR spectra fulfill
this requirement was tested by resupplying Cu to plants
suffering from latent Cu deficiency as indicated by comparing
NIR absorbance spectra with those of control plants. Thirty-
two DAE, at Zadoks growth stage 22−23, Cu deficiency was
clearly established according to a cross-validated PLSDA model
with four latent variables on the NIR absorbance spectra of the
YFDL (Figure 8), and half of the Cu deficient plants were
resupplied with Cu to the same level as that used in the control
treatment. The subsequent plant response was followed by
measuring NIR spectra regularly in order to establish whether
the deficient plants resupplied with Cu were brought back into
a healthy state. Each measuring day, a PLSDA model was
constructed based on control and Cu deficient samples. Using
this model, the Cu resupplied plants were predicted to see
when the major part would be classified as control plants. Four
of the PLSDA models are shown in Figure 9, based on data
from 3, 10, 14, and 17 days after resupply (DAR) or 35, 42, 46,
and 49 DAE (Zadoks growth scale 23−29), and they used 6, 6,

Figure 6. Score plots presenting the first (a) and second (b) principal
component versus measuring day (DAE) of a PCA model based on all
NIR spectra collected in the time series of progressing Cu deficiency.
One batch of control and Cu deficient samples was measured each day.
The order of samples within the measuring day and treatment is
random. The first and second principal components correspond
predominantly to the effect of age and Cu treatment, respectively.

Figure 7. Score plot of a PCA model based on NIR spectra from
control, Cu deficient, and Mn deficient plants 31 DAE. The two
deficiencies separate mainly along the first principal component,
whereas especially control plants tend to have higher values along the
second principal component.
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7, and 9 latent variables, respectively. It is seen that the spectra
of the YFDL of the Cu resupplied plants gradually became
comparable to those of the control plants.
NIR spectra of 982 samples from different, preliminary

experiments were pooled in a common calibration set, and a
PLSDA model separating control from Cu deficient samples
was developed. Plants deficient in P, Mg, Mn, and B alone or in
combination with Cu deficiency were included in the

calibration set, according to Cu status, in order to maximize
robustness. The model was validated on a 72 sample validation
set, half of which were control samples, and half were deprived
of Cu. In order to introduce variation between cultivars in the
investigation, these plants were of cv. ‘Matros’. Sixty-six of the
72 validation samples, or 92%, were classified correctly using
the developed PLSDA model.
A model developed exclusively on 120 calibration samples,

out of the 982, which were cultivated under similar growing
conditions as those of the validation set, was able to classify 62
out of 72, or 86%, of the validation samples correctly. Hence,
including only samples cultivated under similar growing
conditions in the calibration and validation sets did not
improve the performance of the model. Leaving out the same
120 samples of the calibration resulted in a model that classified
the validation set as outliers, thereby showing that growing
conditions are of major importance to the NIR spectra of barley
leaves.

■ DISCUSSION

Score plots of PCA models show that it is possible to
distinguish between control and Cu deficient leaf samples based
on NIR spectra (Figure 5). As Cu deficiency progressed, the
separation improved, demonstrating that the molecular
structure of plants exposed to different Cu treatments differed
more and more from control plants. The only visual symptom
present was growth retardation of roots and shoots when
compared to those of control samples. In a field situation where

Figure 8. Cross-validated predictions of Cu treatment according to a
PLSDA model based on NIR spectra from control and Cu deficient
samples measured 32 DAE. Four latent variables were used in the
model. The dashed line indicates the optimal separation of treatments,
resulting in a clear division.

Figure 9. Predictions of Cu resupplied plants according to PLSDA models based on NIR spectra from control and Cu deficient plants. X-axes show
sample numbers, i.e., they refer to the treatment of the samples. The dashed lines indicate the optimal separation of treatments. Data are derived
from 3, 10, 14, and 17 days after resupplying Cu. The models use 6, 6, 7, and 9 latent variables. With time, an increasing part of the Cu resupplied
samples are predicted as control plants. From 14 DAR, they are predominantly predicted as control samples, and this picture has not changed 17
DAR.
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no control plants are available, the deficiency would therefore
be visually undetectable.
Validity of Method. The specificity of the method was

tested in a setup where both Cu and Mn deficiencies were
induced, along with the cultivation of healthy control plants.
Copper and Mn deficiencies to some extent affect the same
processes in plants, which is why Mn deficiency is the disorder
most likely to be mistaken for Cu deficiency using NIR. Both
micronutrients are essential to the biosynthesis of lignin, which
is downregulated during deficiency,1 and both are components
of SOD’s, i.e., Mn-SOD and Cu−Zn−SOD. Also, photosyn-
thesis is affected by the deficiency of both Mn and Cu, with Mn
deficiency mainly depressing PSII20 and Cu deficiency mainly
affecting the activity of PSI.1 A PCA model successfully
separated NIR spectra of Cu and Mn deficient samples from
both control plants as well as each other, before any visual
deficiency symptoms had appeared (Figure 7). Half of the Cu
deficient plants were resupplied with Cu when clearly separable
from control plants using PLSDA on NIR spectra (Figure 8).
Fourteen days after resupply, the resupplied plants were
predicted, according to a PLSDA model, as belonging to the
control group or just around the threshold value separating
treatment groups (Figure 9). Hence, it is shown that a hidden
Cu deficiency, detectable using NIR spectra, can be remedied
and appears not to have caused any irreversible damage at this
stage of development. Cu concentrations in the resupplied
plants rapidly rose to levels significantly higher than those of
control plants (Table 3). It is, thus, demonstrated that plant
metabolism, as reflected by the NIR spectra, needs time to
equilibrate after having been exposed to a nutrient disorder,
though a sufficient amount of nutrient is provided rapidly.
Further testing of the specificity was carried out by using

PLSDA models, which are focused on separating groups and
which produce actual predictions. A PLSDA model was
developed, based on 982 samples pooled from various
experiments carried out in different climatic conditions,
harvested at different ages and levels of Cu deficiency, and
including plants subjected to other nutritional disorders (Mn,
Mg, B, and P) in addition to Cu. This model was able to predict
92% of a 72 sample validation set of a different cultivar,
‘Matros’, correctly. Limiting the calibration set to 120 samples,
which were cultivated under the exact same growing conditions
as the validation set, decreased the correct classifications slightly
to 86%. This shows that the advantage of similar growing
conditions and ages for calibration and validation sets can be
outweighed or at least balanced by including a large number of
samples covering a range of growing conditions, even combined
with several other nutritional disorders and across various ages
in the calibration set. Thus, it is demonstrated clearly that the
chemometric models developed from NIR spectra were able to
identify general characteristics in the spectra, which are
indicative of Cu deficiency, even when applying models to a
different cultivar. When the 120 samples were excluded from
the calibration set, the validation set became an outlier to the
model, showing that growing conditions do affect the spectral
characteristics to a high degree. In order to develop a robust
model that can be used in practical agriculture, it will therefore
be necessary to collect a wide variety of data from plants grown
under different climatic conditions, in a number of seasons, and
probably also from as many different geographical locations as
possible. Though genotype in this case appears to be of little
importance, most likely numerous cultivars must be included to
develop a generally applicable model.

Growth Characteristics. Lignin concentrations in leaves of
control and Cu deficient plants in the time series of progressing
Cu deficiency did not differ significantly until 14 DAE (Figure
3), the day after complete separation was found using a PCA
model (Figure 5). This result was surprising, as lignin
concentration in leaves was previously found to decrease
during Cu deficiency,33 albeit this finding was derived from
considerably older plants than those in the present experiments.
The spectrum of pure lignin (Figure 4) in the range from 4,000
to 7,500 cm−1 peaked at the same wavelengths as the loadings
of models separating control from Cu deficient samples,
indicating that lignin could be responsible for the separation of
groups. Curiously, when beginning separation between Cu
treatments was noted in PCA score plots, no separation was
found for lignin concentrations yet, which is why this might not
be the sole factor causing separation of Cu treatments. During
stress, the organization and chemical composition of lignin in
the cell walls have previously been shown to change, as
observed in black cottonwood using FT-IR.5 NIR spectra are
the overtones of signals observed in the IR part of the
electromagnetic spectrum, why similar changes are very likely
to be detectable also using NIR. Specifically identifying the
lignin structures in a new investigation would give more clarity
regarding the degree of organizational change and how fast it
occurs.
The presence of latent Cu deficiency in plants deprived of Cu

was stated in all experiments by the gradual decrease in total Cu
concentrations, accompanied by stunting of growth (Tables
2−3 and Figure 1). We observed that only when cultivating
plants deprived of Cu for a prolonged period, up to 49 DAE,
serious “white tip disease” developed. Supporting the stressed
state of the Cu deficient plants is the increase in carotenoids
concentrations relative to control plants, as these generally rise
when the photosystems or photoprotective components are
damaged as during Cu deficiency.1,34

Perspectives for Practical Use. Commercial databases for
NIR-based grain analysis have been developed by several
private companies, including FOSS Analytical, which has been
pioneering the application of NIR and Fourier transform−
infrared (FT-IR) analysis on food and agricultural products. At
first, predictions were only reliable for samples within a very
limited geographical origin, but stability of the calibrations
increased steeply with increasing numbers of growing seasons
and locations included. After collecting more than 30,000
samples from all over the world during 25 years, these
calibrations now span a huge variation, and an accuracy
superior to routine wet chemistry on common samples has
been obtained.35,36 Likewise, a very large data collection may be
necessary in order to build a global calibration for the detection
of Cu deficiency in barley. Local calibrations may be developed
using much smaller data sets, but for robustness, a number of
seasons should be included since climate and other growing
conditions are, as shown, factors of great influence on the
spectra of barley leaves.
The phenomenon of increasing quality of calibrations with

increasing variation and size of the data set has also been
described by Xu, et al.,37 who developed PLS models based on
NIR spectra to predict concentrations of chlorogenic acid in
plant extracts during ethanol precipitation of starch, protein,
polysaccharides, and inorganic acid salts. For predicting N
concentration in grasses using NIR, it has been shown that the
effect of year of growth is of significant influence, and a number
of years have to be included to develop a robust calibration.11
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On the basis of this, it is suggested that by careful and broad
selection of calibration samples, a robust calibration for
detection of Cu deficiency in cereals may be developed even
though a massive database is not yet available.
An attempt to develop a PLS model based on NIR spectra to

predict Cu concentrations in plants resulted in very poor
performance. This is in full accordance with previous findings
for Cu and other essential nutrients, even when combining NIR
with Vis spectra,38 and is explained by the fact that spectra do
not contain direct information about concentrations of
elements but are affected by molecular movements.39,40

Cu deficiency is not only a problem limited to cereal
production. In plantations of pine and eucalyptus species, Cu
deficiency comprises a limitation to optimal growth and
development.41,42 Similar problems are also observed in the
horticultural plant production, including the cultivation of
Prunus species.43 Thus, it would be of interest to investigate
whether NIR analyses of dicot leaves also show a specific
correlation to Cu deficiency and sufficiency and, if they do,
develop a method for diagnosing disorders at early stages also
in these species.
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